Casorati Determinant Solutions for the Discrete Painlevé III Equation

نویسندگان

  • Kenji Kajiwara
  • Yasuhiro Ohta
چکیده

The discrete Painlevé III equation is investigated based on the bilinear formalism. It is shown that it admits the solutions expressed by the Casorati determinant whose entries are given by the discrete Bessel function. Moreover, based on the observation that these discrete Bessel functions are transformed to the q-Bessel functions by a simple variable transformation, we present a q-difference analogue of the Painlevé III equation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Casorati Determinant Solutions for the Discrete Painlevé-II Equation

We present a class of solutions to the discrete Painlevé-II equation for particular values of its parameters. It is shown that these solutions can be expressed in terms of Casorati determinants whose entries are discrete Airy functions. The analogy between the τ function for the discrete PII and the that of the discrete Toda molecule equation is pointed out.

متن کامل

Determinant Structure of the Rational Solutions for the Painlevé IV Equation

Rational solutions for the Painlevé IV equation are investigated by Hirota bilinear formalism. It is shown that the solutions in one hierarchy are expressed by 3-reduced Schur functions, and those in another two hierarchies by Casorati determinant of the Hermite polynomials, or by special case of the Schur polynomials.

متن کامل

and Casorati Determinant Solutions to Non - autonomous 1 + 1 Dimensional Discrete Soliton Equations ( Expansion of Integrable Systems

Some techniques of bilinearization of the non-autonomous 1+1 dimensional discrete soliton equations are discussed by taking the discrete KdV equation, the discrete Toda lattice equation, and the discrete Lotka-Volterra equation as examples. Casorati determinant solutions to those equations are also constructed explicitly. §

متن کامل

Bilinearization and Casorati determinant solutions to non-autonomous 1+1 dimensional discrete soliton equations

Some techniques of bilinearization of the non-autonomous 1 + 1 dimensional discrete soliton equations is discussed by taking the discrete KdV equation, the discrete Toda lattice equation, and the discrete LotkaVolterra equation as examples. Casorati determinant solutions to those equations are also constructed explicitly.

متن کامل

Determinant Form of Dark Soliton Solutions of the Discrete Nonlinear Schrödinger Equation

It is shown that the N-dark soliton solutions of the integrable discrete nonlinear Schrödinger (IDNLS) equation are given in terms of the Casorati determinant. The conditions for reduction, complex conjugacy and regularity for the Casorati determinant solution are also given explicitly. The relationship between the IDNLS and the relativistic Toda lattice is discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994